Using AI to Support Experts

By Adam Poole, Product Design Lead

“Artificial intelligence can boost our analytical and decision-making abilities by providing the right information at the right time.”

Collaborative Intelligence: Humans and AI Are Joining Forces, Harvard Business Review, July 2018.

Whether applied to agriculture, healthcare, or communications, technology supports and enhances a human’s task or experience. Utilizing computing power to process vast sums of data, technology can contribute huge analysis and insights in a timeframe virtually impossible to humans, allowing experts to identify and focus on priority cases. 

Free-flowing data is fast becoming the chief currency in this smart environment. Even so, data is pointless unless it empowers people to make better business decisions. With that in mind, it’s critical for the new generation of industrial systems to deliver a user experience that improves people’s working lives.

Helping Expertise Go Further

Get it right and these systems can play a big role in helping to scale scarce human expertise. They can give people more time to make decisions while much of the routine data analysis is carried out automatically behind the scenes.

To truly harness the power of the smart factory, we need to connect humans and machines in the right way. It’s not about artificial intelligence (AI) displacing years of human expertise, it’s about human and machines becoming the ‘smart system’: collaborating and complementing one another.

There are many exciting examples of AI and advanced analytical tools being used to enhance productivity and efficiency across a wide cross-section of industries. Here are just two examples:

1. Healthcare:
As part of a five-year partnership between Moorfields Eye Hospital NHS Foundation Trust and DeepMind Health, researchers from Moorfields and the UCL Institute of Ophthalmology successfully used machine learning to identify signs of eye disease and make an appropriate referral. Published on Nature Medicine's website, this was achieved through using technology to analyze thousands of historic eye scans to identify and learn from patterns and algorithms. With a 94% accuracy in referral decisions (matching world-leading eye experts), the technology is deemed to be the future of eye testing, enabling earlier diagnosis and more accurate prioritizing of patients.

2. Finance:
Some of the largest fraud losses are suffered in the telecoms industry, with an estimated annual loss of almost $30 billion, according to the most recent estimations by the Communications Fraud Control Association (CFCA). The faster fraud can be detected, the quicker it can be shut down, minimizing financial and reputational losses. Fraud detection software can process and detect complex patterns in vast amounts of data to identify abnormalities or suspicious data that require additional investigation. This releases investigators from data trawling to allow them to focus on qualified cases, providing the opportunity to detect fraud early and minimize damage, financial or otherwise.

Set Priorities to Optimize Resources

Senseye PdM is another great example. Our cloud-based Predictive Maintenance system can monitor thousands of connected assets, automatically detecting abnormal behavior and patterns that match the known failure modes of individual machines. The aim is to spot maintenance issues much earlier, enabling users to fix problems before they can disrupt operations.

Busy maintenance teams typically have only a few minutes at the start of each shift to identify which among their thousands of assets most need their attention. Uniquely, Senseye PdM presents the information back to users in the form of a prioritized list, sorted by the Attention Index. This enables users to see immediately where they should be directing their resources.

Moving Beyond Asset Health

In common with most condition monitoring systems, Senseye PdM previously helped users to set priorities by indicating an Asset Health score for every asset. This is now being replaced by the Attention Index, which provides a single way of sorting assets. This new approach is part of a next generation of analytics being deployed using a new range of in-house algorithms.

attention-index-logo-v1Attention Index takes into account all the ways that Senseye PdM can detect or predict issues: anomaly detection, trends, thresholds and prognostics. The software, at every level, guides the user towards determining the underlying problem, rectifying it and capturing this in the system. This feeds machine learning algorithms so that failures can begin to be spotted early enough to take action.

Asset Health, as a concept, gives the impression that the system understands everything about an asset. This is never the case. A condition monitoring system can only base this score on the sensors and condition indicators set up for each asset (i.e. vibration level). If this leads to a score of 0, what does that really mean? It’s misleading to users.

At-a-Glance Insights

Attention Index supports decision making by presenting a prioritized list of assets. It is the expertise of the user that determines the next step. By keeping the design of the software simple and straightforward, valuable time is saved. By harnessing the power of machine learning, informed decisions are made, and by capturing the actual work done, all parts of the system continue to learn.

By helping users to identify where they should be focusing their maintenance resources, Senseye PdM delivers impressive results, with a typical 85% increase in maintenance accuracy accompanied by reductions of 50% in downtime and a boost of 55% in productivity.   

Want more information about Attention Index® within Senseye PdM? Download our whitepaper "Augmenting Human Expertise with Machine Learning".